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ABSTRACT 

The excess enthalpies of the series 2-butanone + n-alkane, 2-pentanone + n-alkane, 2- 
hexanone + n-alkane and 2-hexanone + n-alcohol at 298.15 K have been separately correlated 

using DARC methods, with excellent fit. 

INTRODUCTION 

The thermodynamic properties of organic liquid mixtures depend on 
various kinds of complex interaction among the molecules present, even 
when all the components are non-electrolytes. Prediction of these properties 
can be based not only on theories of the statistical mechanics of the liquid 
state, but also, more phenomenologically, on the adaptation by Mulet and 
co-workers [1,2] of the DARC system originally developed by Dubois and 
co-workers for pure compounds [3-71, which distinguishes topologically 
distinct positions within a graph [8] associated with a molecule or family of 
molecules. The present work reports the results of applying Mulet and 
co-workers’ “ topological analysis of mixtures” method to the excess enthal- 
pies of ketone + alkane and ketone + alcohol mixtures. 

DESCRIPTION OF THE METHOD 

In the DARC (description, automatization, restitution, correlation) sys- 
tem, a linear molecule is associated with a tree (in the graph-theoretical 
sense) of which the nodes represent the non-H atoms of the molecule, the 
branches represent bonds, and the root is an atom or group of atoms chosen 
with a particular purpose in mind. When considering the structural depen- 
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dence of physical properties within a family of molecules considered as 
having the same root (from which the property in question is considered to 
emanate), the family is associated with the union of the graphs of its 
individual members, and the magnitude of the property is regarded as being 
a linear function of node occupancy 

r=I,+ (T(E) (i(m)) 0) 
where I is the value of a thermodynamicyroperty or a simple function of 
this property. I, is the value of I when T(E) = 0, ittcm) is the information 
vector (I, and the components of icrn) are characteristic coefficients esti- 

mated from the relevant experimental data for m suitable members of the 
family), and the “topological vector” T(E) is a vector listing the occupancy 
of nodes in the environment E, E being a subset of non-root nodes selected 
according to certain flexible rules. In calculating physical properties, the 
DARC method thus seeks to take into account possible differences among 
the contributions of molecular components with different topological rela- 
tionships to the root. If the property in question is considered as being 
generated by the molecule as a whole, rather than by a particular group, 
then instead of the above “monofocal” approach, a “polyfocal” approach is 
used, such that it is a kind of average graph that is associated with each 
molecule. The topological vector becomes the sum of the topological vectors 
of all the graphs obtained by taking each atom of the molecule in turn as 
root. 

When the DARC systemis generalized for the analysis of liquid mixt_ures 
[1,2], the topological vector T used is the sum of the topological vectors Tj of 
the components of the mixture weighted by a characteristic factor S,. 

T = c’i;s, (2) 
In the present work we use [2] Sj = log Xj, where Xi is the mole fraction of 
the component j in the liquid mixture. 

For analysis of the composition-dependence of the properties of a single 
mixture whose components have a single functional gfoup or some other 
special feature, it is also recommended [1,2] that each Tj vector be reduced 
to just two components: T,,i is proportional to the average degree of 
connection of the molecule’s atoms, and is obtained by counting, for each 
atom in the molecule, the number of non-H atoms to which it is bound, and 
summing the results; ?j,2 is the number of non-H atoms outside the special 
feature. 

APPLICATION TO KETONE+ALKANE AND KETONE+ALCOHOL MIXTURES 

This methodology was applied to the logarithmic excess enthalpies (Z = log 
HE) of the series 2-butanone + n-alkane, 2-pentanone + n-alkane, 2- 



23 

TABLE 1 

Components of topological vectors 

Compound T, T2 

2-Butanone 8 2 
2-Pentanone 10 3 
2-Hexanone 12 0 
n-Pentane 8 0 
n-Hexane 10 0 
n-Heptane 12 0 
n-Octane 14 0 
n-Decane 18 0 
I-Hexanol 12 5 
1-Heptanol 14 6 
1-Octanol 16 7 
I-Nonanol 18 8 
1-Decanol 20 9 

hexanone + n-alkane and 2-hexanone + n-alcohol at 298.15 K. For the first 
two of these series we used the experimental data of Kiyohara and co-workers 
[?,lO], and for the others our own recently reported data [ll]. In obtaining 
Tj,2, the terminal Me-CO-group was taken as the root of the graphs for the 
ketones, and ihe terminal -CH,OH group as the root for the alcohols. For 
the alkanes, Tj,* was taken as zero because these do _not have a specific 
functional group. Table 1 lists the values of Tj,l and Tj,2 for each of the 
compounds considered. 

The 1, parameters were estimated for each mixture by fitting eqn. (1) to 
the experimental data for four compositions (xi, 1 - x1). The results are 
listed in the columns headed “(a)” in Table 2. Table 2 also compares the 
experimental values of HE for x = 0.5 with those calculated using these 
parameters, and lists the root mean square (r.m.s.) deviations between the 
experimental values and both the present predictions and those obtained by 
fitting Redlich-Kister equations to all the experimental data. 

In view of the systematic variation of the Ii parameters within each series 
of mixtures, they were fitted with quadratic functions of the number of 
carbon atoms n in the variable component of the series 

Ii(n) = 6 A,,nj (3) 
j=O 

The values of Aij estimated by fitting eqn. (3) to the 1, data for all 
members of the series are listed in Table 3. The new Ii values calculated 
from eqn. (3) using these Aij values, and the corresponding values of HE 
(x = 0.5) and of the r.m.s. deviation from the experimental values are listed 
in Table 2 in the columns headed “(b)“. The corresponding HE-x curves for 
all the mixtures of the four series are shown in Fig. 1, together with the 



T
A

B
L

E
 

2 
N

 
P

 

C
om

po
n

en
ts

 
of

 
I,

 c
al

cu
la

te
d 

by
 m

et
h

od
s 

(a
) 

an
d 

(b
);

 
ex

pe
ri

m
en

ta
l 

ex
ce

ss
 e

n
th

al
pi

es
 f

or
 x

 =
 0

.5
, 

to
ge

th
er

 w
it

h
 v

al
u

es
 c

al
cu

la
te

d 
by

 m
et

h
od

s 
(a

) 
an

d 
(b

);
 

an
d 

r.
m

.s
. 

de
vi

at
io

n
s 

of
 R

ed
li

ch
-K

is
te

r,
 

(a
) 

an
d 

(b
) 

cu
rv

es
 f

ro
m

 t
h

e 
ex

pe
ri

m
en

ta
l 

va
lu

es
 

A
lk

an
on

e 
n

 
IC

I 
11

 
12

 
H

, 
x 

= 
0.

5 
(J

 m
ol

-‘)
 

s 
+

 
(a

) 
(b

) 
(a

) 
(b

) 
(a

) 
(b

) 
E

xp
. 

(a
) 

(b
) 

R
.-

K
. 

(a
) 

(b
) 

n
-a

lk
an

e 

2-
B

u
ta

n
on

e 
5 

3.
59

1 
3.

59
4 

0.
11

99
 

0.
19

90
 

- 
0.

08
50

 
- 

0.
07

98
 

11
59

 
11

68
 

11
72

 
1.

0 
16

 
12

 
2-

B
u

ta
n

on
e 

6 
3.

62
9 

3.
62

3 
0.

09
38

 
0.

09
49

 
0.

03
63

 
0.

02
68

 
12

52
 

12
56

 
12

38
 

1.
3 

8 
18

 
2-

B
u

ta
n

on
e 

7 
3.

64
5 

3.
64

8 
0.

07
46

 
0.

07
56

 
0.

11
36

 
0.

11
24

 
13

38
 

13
40

 
13

34
 

1.
5 

12
 

11
 

2-
B

u
ta

n
on

e 
8 

3.
66

9 
3.

67
0 

0.
06

31
 

0.
06

13
 

0.
16

96
 

0.
17

69
 

14
08

 
14

09
 

14
37

 
1.

5 
9 

33
 

2-
B

u
ta

n
on

e 
10

 
3.

70
5 

3.
70

4 
0.

04
70

 
0.

04
74

 
0.

24
49

 
0.

24
98

 
15

45
 

15
48

 
15

39
 

1.
5 

_ 
12

 
2-

P
en

ta
n

on
e 

5 
3.

52
3 

3.
52

0 
0.

12
60

 
0.

12
45

 
- 

0.
16

16
 

- 
0.

15
79

 
96

6 
96

9 
97

2 
0.

6 
8 

10
 

2-
P

en
ta

n
on

e 
6 

3.
54

9 
3.

55
6 

0.
09

71
 

0.
09

97
 

- 
0.

05
95

 
- 

0.
06

62
 

10
40

 
10

43
 

10
36

 
1.

0 
10

 
13

 
2-

P
en

ta
n

on
e 

7 
3.

59
3 

3.
58

8 
0.

08
00

 
0.

07
99

 
0.

00
84

 
0.

00
75

 
11

35
 

11
38

 
11

29
 

1.
1 

8 
11

 
2-

P
en

ta
n

on
e 

8 
3.

61
6 

3.
61

6 
0.

06
68

 
0.

06
50

 
0.

05
80

 
0.

06
33

 
12

03
 

12
05

 
12

27
 

0.
8 

7 
25

 
2-

P
en

ta
n

on
e 

10
 

3.
65

6 
3.

65
6 

0.
04

97
 

0.
05

02
 

0.
12

25
 

0.
12

09
 

13
35

 
13

38
 

13
31

 
0.

9 
8 

9 
2-

H
ex

an
on

e 
6 

3.
54

8 
3.

54
7 

0.
10

99
 

0.
10

83
 

- 
0.

12
73

 
- 

0.
12

57
 

94
9 

94
9 

95
7 

6 
10

 
11

 
2-

H
ex

an
on

e 
7 

3.
56

4 
3.

56
1 

0.
08

30
 

0.
08

42
 

- 
0.

04
92

 
- 

0.
05

29
 

10
55

 
10

57
 

10
38

 
8 

11
 

18
 

2-
H

ex
an

on
e 

8 
3.

56
7 

3.
58

4 
0.

06
55

 
0.

06
72

 
0.

00
12

 
0.

00
20

 
11

32
 

11
29

 
11

38
 

8 
16

 
14

 
2-

H
ex

an
on

e 
9 

3.
63

8 
3.

61
8 

0.
06

10
 

0.
05

74
 

0.
03

65
 

0.
03

89
 

11
98

 
12

02
 

12
23

 
7 

11
 

28
 

2-
H

ex
an

on
e 

10
 

3.
65

5 
3.

66
2 

0.
05

33
 

0.
05

47
 

0.
05

94
 

0.
05

80
 

12
68

 
12

65
 

12
54

 
6 

7 
18

 

A
lk

an
on

e 
n

 
10

 
1,

 
12

 
H

, 
x=

0.
5(

Jm
ol

-‘)
 

s 
+

 
(a

) 
(b

) 
(a

) 
(b

) 
(a

) 
(b

) 
E

xp
. 

(a
) 

(b
) 

R
.-

K
. 

(a
) 

(b
) 

n
-l

-a
lc

oh
ol

 

2-
H

ex
an

on
e 

6 
3.

70
0 

3.
70

3 
0.

09
03

 
0.

09
27

 
- 

0.
04

02
 

- 
0.

04
59

 
14

31
 

14
34

 
14

37
 

8 
13

 
14

 
2-

H
ex

an
on

e 
7 

3.
72

5 
3.

71
7 

0.
13

15
 

0.
12

54
 

- 
0.

15
78

 
- 

0.
14

46
 

14
78

 
14

82
 

14
82

 
8 

13
 

13
 

2-
H

ex
an

on
e 

8 
3.

73
1 

3.
73

6 
0.

14
90

 
0.

15
22

 
- 

0.
21

70
 

- 
0.

22
28

 
15

45
 

15
62

 
15

58
 

9 
23

 
20

 
2-

H
ex

an
on

e 
9 

3.
76

1 
3.

76
1 

0.
17

13
 

0.
17

30
 

- 
0.

27
47

 
- 

0.
28

04
 

16
11

 
16

08
 

16
23

 
5 

11
 

24
 

2-
H

ex
an

on
e 

10
 

3.
79

3 
3.

79
2 

0.
18

92
 

0.
18

78
 

- 
0.

32
13

 
- 

0.
31

76
 

16
88

 
15

90
 

15
74

 
8 

12
 

21
 



TABLE 3 

Parameters Ai, of eqn. (3) 

25 

Series i 40 A,, -4i2 

2-Butanone 
+ n-alkanes 

2-Pentanone 
+ n-alkanes 

2-Hexanone 

+ n-alkanes 

2-Hexanone 
+ n-l-alcohol 

0 3.3990 0.0473 - 0.0017 
1 0.3140 - 0.0513 0.0025 
2 - 0.9291 0.2225 - 0.0105 
0 3.2668 0.0623 - 0.0023 
1 0.3231 - 0.0521 0.0025 

2 - 0.8856 0.1904 - 0.0090 
0 3.6712 - 0.0504 0.0049 
1 0.4039 - 0.0708 0.0036 
2 - 0.9389 0.1893 - 0.0090 
0 0.0976 - 0.0212 0.0027 
1 - 0.2289 0.0715 - 0.0030 
2 - 0.9766 - 0.2320 0.0102 

800 

Fig. 1. Excess molar enthalpies HE at 298.15 K for mixtures of the series 2-butanone+ n- 
alkane (a), 2-pentanone + n-alkane (b), 2-hexanone + n-alkane (c) and 2-hexanone + n-alcohol 
(d): o, experimental values; - - -, calculated curves. 
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experimental points. It can be seen that the fit achieved is very satisfactory 
considering the small number of data upon which the curves are based. 

CONCLUSIONS 

The method sketched above appears to be very useful for the prediction 
of excess functions over the whole range of compositions from a small 
number of experimental data. We would nevertheless point out that if, as in 
this study, it is logarithmic quantities that are to be predicted, the excess 
function must be positive over the whole range of compositions; and that 
the quadratics fitted using eqn. (3) allow interpolated prediction when data 
are unavailable for intermediate members of a series, but do not allow 
reliable extrapolation. 
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